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Abstract. We derive the exact expression of the diffusion coefficient of a self-gravitating Brownian gas
in two dimensions. Our formula generalizes the usual Einstein relation for a free Brownian motion to the
context of two-dimensional gravity. We show the existence of a critical temperature Tc at which the diffusion
coefficient vanishes. For T < Tc, the diffusion coefficient is negative and the gas undergoes gravitational
collapse. This leads to the formation of a Dirac peak concentrating the whole mass in a finite time. We
also stress that the critical temperature Tc is different from the collapse temperature T∗ at which the
partition function diverges. These quantities differ by a factor 1− 1/N where N is the number of particles
in the system. We provide clear evidence of this difference by explicitly solving the case N = 2. We also
mention the analogy with the chemotactic aggregation of bacteria in biology, the formation of “atoms”
in a two-dimensional (2D) plasma and the formation of dipoles or “supervortices” in 2D point vortex
dynamics.

PACS. 05.45.-a Nonlinear dynamics and chaos – 05.40.-a Fluctuation phenomena, random processes,
noise, and Brownian motion – 05.20.-y Classical statistical mechanics – 04.40.-b Self-gravitating systems;
continuous media and classical fields in curved spacetime

1 Introduction

Recently, there was a renewed interest for systems with
long-range interactions [1]. These systems have a very
strange thermodynamics and exhibit peculiar features
that are very different from those of more familiar sys-
tems with short-range interactions like neutral gases and
plasmas. One striking property of systems with unshielded
attractive long-range interactions is their ability to self-
organize spontaneously into large-scale coherent struc-
tures. Some examples are provided by stars, globular
clusters and galaxies in astrophysics, jets and vortices
(e.g. Jupiter’s great red spot, gulf stream,...) in two-
dimensional geophysical flows, bacterial aggregates in bi-
ology, clusters in the Hamiltonian Mean Field (HMF)
model etc. As a result of spatial inhomogeneity and non-
extensivity, the ordinary thermodynamic limit (N → +∞
with N/V fixed) is clearly irrelevant for these systems
and must be reconsidered [2,3]. On the other hand, the
statistical ensembles are generically inequivalent and the
choice of the relevant ensemble must be addressed specifi-
cally. Therefore, systems with long-range interactions are
special and escape the ordinary rules of thermodynam-
ics. Among all types of systems with long-range inter-
actions, self-gravitating systems are probably the most
fundamental [4]. These systems have a complex thermody-

a e-mail: chavanis@irsamc.ups-tlse.fr

namics and present interesting phase transitions between
“gaseous” and “clustered” states [5]. They can indeed un-
dergo catastrophic collapse below a critical energy Ec in
the microcanonical ensemble [6] or below a critical temper-
ature Tc in the canonical ensemble [7] when gravitational
attraction overcomes diffusive effects.

In astrophysics, the dynamics of self-gravitating sys-
tems is basically described by the Newton equations where
the acceleration of a particle is equal to the gravita-
tional force (per unit of mass) created by the other par-
ticles [8–10]. These equations have a Hamiltonian struc-
ture. For a large number of particles N � 1, we cannot
follow the motion of each particle in detail and we must
have recourse to statistical mechanics [4,5]. An isolated
self-gravitating system is conservative (evolving at fixed
energy E) so that the proper statistical ensemble is the
microcanonical ensemble. This is the correct description
of stellar systems such as globular clusters and galaxies.
The Hamiltonian N -stars model has a very long history
starting with Newton’s Principia Mathematica in 1687.

In a recent series of papers, Chavanis and Sire [11–21]
have introduced and systematically studied a model of
self-gravitating Brownian particles. In this model, the par-
ticles interact gravitationally but they also experience
a friction force and a stochastic force which mimick a
coupling with a thermal bath of non gravitational ori-
gin. Therefore, the basic equations of motion consist in
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a set of N coupled Langevin equations. This system is
dissipative (evolving at fixed temperature T ) so that the
proper statistical ensemble to consider is the canonical
ensemble. This Brownian model could find applications
in the process of planetesimal formation in the solar neb-
ula [22]. In this context, the dust particles experience a
friction with the gas, a stochastic force due to turbulence
and, when the dust layer becomes dense enough, self-
gravity must be taken into account. On the other hand,
some interesting analogies have been found between a self-
gravitating Brownian gas and the process of chemotaxis
in biology [17,23], the formation of large-scale vortices in
2D turbulence [24,25] and the Bose-Einstein condensa-
tion in the canonical ensemble [26]. At a more academic
level, Brownian motion is a fundamental process in physics
(pioneered by the works of Einstein and Smoluchowski)
and it is clearly of interest to investigate the situation
where N Brownian particles are coupled by a long-range
potential of interaction, like the gravitational interaction.
These various arguments may justify the study of the self-
gravitating Brownian gas model.

Random walkers in interaction described by N coupled
Langevin equations are also studied in soft matter physics
to compute transport properties of systems consisting in
many interacting particles such as supercooled liquids or
the dynamics of colloids in solution [27,28]. In these ex-
amples, the potential of interaction is short-range and the
system is spatially homogeneous at equilibrium. An inter-
esting problem consists in determining the effective diffu-
sion coefficient of a particle of the system. This is a very
difficult problem and essentially perturbative approaches
have been developed. For example, Dean and Lefèvre [29]
consider a regime of weak coupling (small β with fixed
βρ) where diagrammatic expansions can be carried out.
Interestingly, their approach suggests that the system will
experience a glassy behaviour (identified by the divergence
of the relaxation time and the vanishing of the diffusion co-
efficient) at some critical temperature Tc. However, since
the expansions are valid at high temperatures, it is not
clear whether their extrapolation to lower temperatures
of order Tc is justified.

In this paper we show that, for the self-gravitating
Brownian gas in two dimensions, the diffusion coefficient
of a particle can be calculated exactly for any temperature.
It is given by the following expression

D(T ) =
kBT

ξm

(
1 − Tc

T

)
, (1)

where Tc is the critical temperature

kBTc = (N − 1)
Gm2

4
. (2)

For T � Tc, when self-gravity becomes negligible, we re-
cover the Einstein relation [30]. In that case, the parti-
cles have a diffusive motion (corresponding to an evapo-
ration of the system) slightly modified by self-gravity. For
T = Tc, the diffusion coefficient vanishes and for T < Tc

it becomes negative implying finite time collapse. In that
case, the system forms a Dirac peak containing the whole

mass in a finite time. These different regimes have been
studied in detail in the mean field approximation by ana-
lytically solving the Smoluchowski-Poisson system [12,19].
Here, we present complementary results that are valid be-
yond the mean field approximation. We stress that, con-
trary to the case of systems with short-range interactions
like those evocated above [27–29], we calculate the dif-
fusion coefficient of a particle in a gravitational system
that is out-of-equilibrium and spatially inhomogeneous.
The context is therefore very different from the case of
soft matter physics [27–29]. We also stress that the result
(1)-(2) only holds in two-dimensional gravity. Gravity is
known to be critical in two dimensions because, dimen-
sionally, the gravitational potential u = Gm2 ln(rij) does
not depend on the distance (the distance enters in a di-
mensionless logarithmic factor). This is the intrinsic rea-
son why the Virial of the gravitational force and the dif-
fusion coefficient can be calculated exactly in 2D gravity.

The paper is organized as follows. In Section 2, we
develop a many-body theory of Brownian particles in in-
teraction and derive exact kinetic equations valid for an
arbitrary binary potential of interaction (Sect. 2.1). In
Section 2.3, we derive the general expression of the Virial
theorem for a Brownian gas with two-body interactions.
When we consider the gravitational potential in two di-
mensions (Sect. 2.4), the Virial theorem takes a very sim-
ple form from which we can deduce the exact expression
of the diffusion coefficient (Sect. 2.5). The mean field ap-
proximation is considered in Section 2.6. In Section 3, we
obtain the exact equation of state of a self-gravitating gas
in two dimensions. This equation of state, first derived
in plasma physics for electric charges [31], is well-known.
It is usually derived in the canonical ensemble from the
partition function [4,32]. Here, we show that the same ex-
pression can be obtained in the microcanonical ensemble
from the density of states. We also generalize its expres-
sion by allowing the particles to have different masses (or
charges). In Section 4, we investigate the existence of sta-
tistical equilibrium for a two-dimensional self-gravitating
system in the canonical ensemble. We show that the par-
tition function exists only above a temperature T∗. This
temperature differs from the critical temperature Tc ap-
pearing in the Virial theorem and in the equation of state
by a factor 1− 1/N where N is the number of particles in
the system. We provide clear evidence of this difference by
explicitly solving the case N = 2 in Section 5. This differ-
ence has been overlooked in the literature. However, this
is essentially a curiosity because, in the thermodynamic
limit N → +∞, the two temperatures coincide.

2 Many-body theory

2.1 Exact kinetic equations

In a space of dimension d, we consider a system of N
Brownian particles confined within a domain (box) of vol-
ume V and interacting via a binary potential [2,3]. Their
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dynamics is described by the coupled Langevin equations

drα

dt
= vα, (3)

dvα

dt
= −ξαvα − 1

mα
∇αU(r1, ..., rN ) +

√
2D′

αRα(t),

(4)

where ξα is a friction coefficient, D′
α a diffusion coeffi-

cient and Rα(t) a white noise satisfying 〈Rα(t)〉 = 0 and
〈Rα,i(t)Rβ,j(t′)〉 = δi,jδα,βδ(t − t′) where α = 1, ..., N la-
bels the particles and i = 1, ..., d the coordinates of space.
The particles interact via the potential

U(r1, ..., rN ) =
∑
α<β

mαmβu(|rα − rβ |), (5)

where u(|r − r′|) is a binary potential of interaction de-
pending only on the absolute distance between the parti-
cles. The N -body Fokker-Planck equation describing the
evolution of this system is

∂PN

∂t
+

N∑
α=1

(
vα · ∂PN

∂rα
+ Fα · ∂PN

∂vα

)
=

N∑
α=1

∂

∂vα
·
[
D′

α

∂PN

∂vα
+ ξαPNvα

]
, (6)

where PN (r1,v1, ..., rN ,vN , t) is the N -body distribution
function and Fα = − 1

mα
∇αU is the force by unit of mass

experienced by particle α. In order to obtain the canonical
distribution (8) at statistical equilibrium, we must impose
the Einstein relation

D′
α =

ξαkBT

mα
. (7)

This shows that the temperature T is a measure of the
strength of the stochastic force in equation (4). Then, the
stationary solution of the Fokker-Planck equation (6), can-
celling independently [3] the advection term (l.h.s.) and
the “collision” term (r.h.s.), is the canonical distribution

PN (r1,v1, ..., rN ,vN ) =
1

Z(β)
e−βH(r1,v1,...,rN ,vN), (8)

where H is the Hamiltonian

H =
N∑

α=1

mα
v2

α

2
+
∑
α<β

mαmβu(|rα − rβ |). (9)

In the overdamped limit where ξα → +∞, we can neglect
the inertia of the particles in equation (4) and we get

drα

dt
= −µα∇αU(r1, ..., rN ) +

√
2DαRα(t), (10)

where we have introduced the mobility µα = 1/(ξαmα)
and the spatial diffusion coefficient Dα = D′

α/ξ2
α. The

N -body Fokker-Planck equation describing the evolution
of this system is

∂PN

∂t
=

N∑
α=1

∂

∂rα
·
[
Dα

∂PN

∂rα
+ µαPN

∂U

∂rα

]
, (11)

where PN (r1, ..., rN , t) is the N -body distribution in con-
figuration space. In order to obtain the canonical distri-
bution (14) at statistical equilibrium, we must impose the
Einstein relation1

µα

Dα
=

1
kBT

≡ β. (12)

Using the expression of the mobility, the Einstein relation
can be rewritten

Dα =
kBT

ξαmα
. (13)

This expression can also be obtained from equation (7).
Then, the stationary solution of the Fokker-Planck equa-
tion (11) is the configurational part of the canonical dis-
tribution

PN (r1, ..., rN ) =
1

Z(β)
e−βU(r1,...,rN). (14)

If we introduce the one and two-body probability distri-
butions

Pα(r, t) =
∫

PN (r1, ..., rN )
∏
γ �=α

drγ , (15)

Pα,β(r, r′, t) =
∫

PN (r1, ..., rN )
∏

γ �=α,β

drγ , (16)

we find from equation (11) that the one-body distribution
function (15) satisfies a kinetic equation of the form

∂Pα

∂t
=

∂

∂r
·
[
Dα

∂Pα

∂r
+ µα

∑
β �=α

mαmβ

×
∫

dr′Pα,β(r, r′, t)
∂u

∂r
(|r − r′|)

]
. (17)

An alternative derivation of this equation is given in Ap-
pendix A. This equation is exact and takes into account
statistical correlations encapsulated in the two-body dis-
tribution (16). As a result, this equation is not closed since
it involves a distribution of higher order. The complete hi-
erarchy of equations for the reduced distributions is given
in [2,3].

1 For a multi-components system, a necessary condition for
the Fokker-Planck equation (11) to admit a stationary solution
is that the ratio µα/Dα be independent on α. This ratio is
identified with the inverse temperature β.
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2.2 The potential energy tensor

We introduce the potential energy tensor2

Wij = −
∑
α

∑
β �=α

mαmβ

×
∫

drdr′Pα,β(r, r′, t)xi
∂u

∂xj
(|r − r′|). (18)

Since u(|r − r′|) depends only on the absolute distance
between the particles we get

Wij = −
∑
α�=β

mαmβ

∫
drdr′Pα,β(r, r′, t)

× xi
u′(|r − r′|)
|r − r′| (xj − x′

j). (19)

Interchanging the dummy variables α, β and r, r′, we have
equivalently

Wij =
∑
α�=β

mαmβ

∫
drdr′Pα,β(r, r′, t)

× x′
i

u′(|r − r′|)
|r − r′| (xj − x′

j). (20)

Summing equations (19) and (20), we obtain

Wij = −1
2

∑
α�=β

mαmβ

×
∫

drdr′Pα,β(r, r′, t)
u′(|r − r′|)
|r − r′| (xi − x′

i)(xj − x′
j).

(21)

Under this form, the potential energy tensor is manifestly
symmetric

Wij = Wji. (22)

The trace of the potential energy tensor is

Wii = −1
2

∑
α�=β

mαmβ

×
∫

drdr′Pα,β(r, r′, t)u′(|r − r′|)|r − r′|. (23)

2.3 The exact Virial theorem

We introduce the tensor of inertia3

Iij(t) =
1
ξ

∑
α

∫
Pα(r, t)ξαmαxixjdr, (24)

2 This is the usual N-body potential energy tensor [8] aver-
aged over the noise.

3 This expression incorporates the friction coefficients ξα.
This generalization proves to be necessary in order to obtain a
closed expression of the Virial theorem for a multi-components
system. For identical particles, the expression (24) coincides
with the usual tensor of inertia of a N-body system [8] aver-
aged over the noise.

where ξ ≡ 1
N

∑
α ξα is the average friction coefficient.

From equation (17), we obtain

ξİij = −
∑
α

∫
dr(xiδkj + xjδki)

[
kBT

∂Pα

∂xk

+
∑
β �=α

mαmβ

∫
dr′Pα,β(r, r′, t)

∂u

∂xk
(|r − r′|)

]
, (25)

where we have used an integration by parts (the boundary
term cancels out since the current of diffusion vanishes
on the box due to the conservation of the normalization
condition

∫
Pαdr = 1). On the other hand,

−
∫

(xiδkj + xjδki)
∂Pα

∂xk
dr = 2δij −

∮
Pα(xidSj + xjdSi),

(26)
and

−
∑
α

∫
dr (xiδkj + xjδki)

∑
β �=α

mαmβ

×
∫

dr′Pα,β(r, r′, t)
∂u

∂xk
(|r − r′|) = 2Wij . (27)

We thus obtain

ξİij = 2NkBTδij + 2Wij −
∑
α

kBT

∮
Pα(xidSj + xjdSi),

(28)
which is the general expression of the Virial theorem for a
Brownian gas of particles in interaction in the overdamped
limit. Introducing the local pressure

p(r, t) =
∑

α

Pα(r, t)kBT, (29)

the Virial theorem can be rewritten

ξİij = 2NkBTδij + 2Wij −
∮

p(xidSj + xjdSi). (30)

The scalar Virial theorem is obtained by contracting the
indices leading to

1
2
ξİ = dNkBT + Wii −

∮
pr · dS, (31)

where

I(t) =
1
ξ

∑
α

∫
Pα(r, t)ξαmαr2dr, (32)

is the generalized moment of inertia (including friction
coefficients). If the pressure is constant on the boundary
of the domain, we have∮

pr · dS = pb

∮
r · dS = pb

∫
∇ · r dr = dpbV. (33)

More generally, we introduce the notation

P =
1

dV

∮
pr · dS, (34)



P.H. Chavanis: Exact diffusion coefficient of self-gravitating Brownian particles in two dimensions 395

which can be identified with a kinetic pressure. Then, the
scalar Virial theorem can be written

1
2
ξİ = dNkBT + Wii − dPV. (35)

At equilibrium (İ = 0), we have

dNkBT + Wii − dPV = 0. (36)

In the absence of interaction, we recover the perfect gas
law

PV = NkBT. (37)

2.4 The gravitational potential

The gravitational potential in d dimensions is given by

u(ξ) = − 1
d − 2

G

ξd−2
(d �= 2), (38)

u(ξ) = G ln ξ (d = 2), (39)

where G is the gravity constant (whose value depends on
the dimension of space). The gravitational force is given by

u′(ξ) =
G

ξd−1
. (40)

Inserting this expression in equation (21), we find that the
gravitational potential energy tensor reads

Wij = −G

2

∑
α�=β

mαmβ

×
∫

drdr′Pα,β(r, r′, t)
(xi − x′

i)(xj − x′
j)

|r − r′|d , (41)

and that the trace of the potential energy tensor is

Wii = −G

2

∑
α�=β

mαmβ

∫
drdr′Pα,β(r, r′, t)

1
|r − r′|d−2

.

(42)
For d �= 2, we have

Wii = (d − 2)W, (43)

where W is the usual potential energy [8] averaged over
the noise. In that case, the scalar Virial theorem (35) can
be written

1
2
ξİ = dNkBT + (d − 2)W − dPV. (44)

For d = 2 a “miracle” occurs and we get the simple exact
result

Wii = −G

2

∑
α�=β

mαmβ , (45)

where we recall that
∑

α�=β =
∑N

α=1

∑
β �=α. We note that

this expression, contrary to equation (43), does not depend
on the configuration of the system but only on the masses
of the particles. We define a critical temperature

kBTc =
G
∑

α�=β mαmβ

4N
. (46)

For equal mass particles, we have

kBTc = (N − 1)
Gm2

4
. (47)

Then, the scalar Virial theorem (35) in d = 2 can be
written

1
4
ξİ = NkB(T − Tc) − PV. (48)

At equilibrium, in a bounded domain, we get the exact
equation of state

PV = NkB(T − Tc), (49)

where P is the kinetic pressure (34). In Section 3, we shall
obtain this equation of state directly from the partition
function and deduce, by identification, that P also rep-
resents the thermodynamical pressure. Since P ≥ 0, we
conclude that a necessary condition for the system to be
at statistical equilibrium is that T ≥ Tc. For T < Tc,
we cannot have statistical equilibrium since the pressure
would be negative. In fact, for T < Tc, we have İ ≤ ε < 0
so that I(t) = 0 at a finite time t = tend implying that the
system forms a Dirac peak containing all the mass in a fi-
nite time. Therefore, statistical equilibrium is not possible
for T < Tc. However, the condition T ≥ Tc does not guar-
antee statistical equilibrium. We shall see in Section 4 that
statistical equilibrium is possible only for T ≥ T∗ where
T∗ is strictly larger than Tc. For Tc < T < T∗, the system
collapses (or has a peculiar temporal behaviour) so that
equation (49), corresponding to İ = 0, is never satisfied.

In an infinite domain, assuming that initially the par-
ticles are in a confined region of space, the pressure at
infinity vanishes (P = 0) and the scalar Virial theorem
(48) reduces to

1
4
ξİ = NkB(T − Tc). (50)

This equation is readily integrated leading to

I(t) =
4NkB

ξ
(T − Tc)t + I(0). (51)

For T < Tc, the moment of inertia vanishes (I = 0) at

tend =
I(0)ξ

4NkB(Tc − T )
, (52)

implying that the system forms a Dirac peak containing
the whole mass in a finite time tend. For T > Tc, I(t) →
+∞ for t → +∞ indicating that the system evaporates.
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2.5 The diffusion coefficient in d = 2

In this section, we restrict ourselves to a one component
system. In that case,

I =
∫

ρr2dr, (53)

is the usual moment of inertia with ρ = NmPα for any
α = 1, ..., N . The mean squared displacement of a particle
(any) is given by

〈r2〉 =
∫

ρr2dr
M

=
I

M
. (54)

Thus, from equation (50), we obtain

d〈r2〉
dt

=
4kB

ξm
(T − Tc), (55)

where Tc is given by equation (47). After integration, we
get

〈r2〉 =
4kB

ξm
(T − Tc)t + 〈r2〉0. (56)

The diffusion coefficient of the particle is defined by

〈r2〉 ∼ 4D(T )t, (t → +∞). (57)

Therefore, it is given by the exact expression

D(T ) =
kB

ξm
(T − Tc). (58)

In the absence of gravity (G = Tc = 0), or for high temper-
atures (T � Tc) where gravitational attraction becomes
negligible with respect to thermal motion, we recover the
usual expression of the diffusion coefficient given by the
Einstein relation

D =
kBT

ξm
. (59)

However, for smaller temperatures, gravitational effects
come into play and the expression of the diffusion coeffi-
cient is modified. Interestingly, there exists a critical tem-
perature Tc at which the diffusion coefficient vanishes4.
For T > Tc the diffusion coefficient is positive so that the
system evaporates. For T < Tc the diffusion coefficient
becomes negative implying finite time collapse to a Dirac
peak containing the whole mass in a time

tend =
mξ〈r2〉0

4kB(Tc − T )
. (60)

This time behaves like (Tc − T )−1 for any T < Tc and
diverges at the critical point Tc. At T = Tc the Dirac
peak is formed in infinite time. These different regimes
have been studied in [12,16,19] by solving the (mean field)
Smoluchowski-Poisson system in two dimensions.

4 This is physically different from the vanishing of the diffu-
sion coefficient in the case of colloids [29] which is due to the
close packing of the particles (steric hindrance) in the glassy
phase (the particles cannot move freely) while in the present
situation we have a collapse due to an attractive potential.

2.6 The mean field approximation

The preceding results are exact for self-gravitating Brow-
nian particles in d = 2 dimensions, whatever the number
N of constituents. In particular, they take into account
statistical correlations. However, in most works on self-
gravitating systems, one usually considers a mean field
approximation where the equations of the problem can
be simplified. In general, this approximation is valid for
N � 1. In this section, we briefly describe how the mean
field approximation can be implemented and how the re-
sults are modified.

The essence of the mean field approximation is to as-
sume that the two-body probability distribution can be
written as the product of two one-body probability distri-
butions according to

Pα,β(r, r′, t) = Pα(r, t)Pβ(r′, t). (61)

This approximation allows one to close the hierarchy of
equations at the level of equation (17). For systems with
long-range interactions, it can be shown that this ap-
proximation is exact in a proper thermodynamic limit
N → +∞ with η = βNu∗ and ε = E/(u∗N2) fixed,
where u∗ is the typical value of the binary potential.
For the gravitational potential in d dimensions where
u∗ = Gm2/Rd−2, the thermodynamic limit corresponds
to N → +∞ in such a way that the dimensionless tem-
perature η = βGMm/Rd−2 and the dimensionless energy
ε = ERd−2/GM2 are fixed. One can always rescale the
quantities of the problem so that the coupling constant
(G in gravity) scales like u∗ ∼ 1/N while E ∼ N , T ∼ 1
and V ∼ 1 [2]. In this limit, the factorization (61) is valid
up to terms of order 1/N . Since we consider a large num-
ber limit, we can also extend the sum in equation (17)
over all the particles. This yields

∂Pα

∂t
=

∂

∂r
·
[
Dα

∂Pα

∂r
+ µαmαPα(r, t)

×∇
∑

β

mβ

∫
dr′Pβ(r′, t)u(|r − r′|)

]
. (62)

If we introduce the density

ρ(r, t) =
∑
α

Pα(r, t)mα, (63)

we get

∂Pα

∂t
=

∂

∂r
·
[
Dα

∂Pα

∂r
+ µαmαPα(r, t)

×∇
∫

dr′ρ(r′, t)u(|r− r′|)
]
. (64)

This equation can be rewritten in the form of a mean field
Smoluchowski equation

∂Pα

∂t
=

∂

∂r
·
[
Dα

∂Pα

∂r
+ µαmαPα(r, t)∇Φ

]
, (65)
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where the potential is determined by the density according
to

Φ(r, t) =
∫

ρ(r′, t)u(|r − r′|)dr′. (66)

For the gravitational potential, the preceding equation is
equivalent to the Poisson equation

∆Φ = SdGρ. (67)

Therefore, in the mean field approximation, we have to
solve the multi-components Smoluchowski-Poisson system
(65)–(67). The steady state of equation (65) is the mean
field Boltzmann distribution

Pα(r) = Aαe−βmαΦ(r). (68)

The single component Smoluchowski-Poisson system has
been studied in [11–17,19–21] and the two components
Smoluchowski-Poisson system has been studied in [18].

To establish the expression of the Virial theorem in the
mean field approximation, we can use a procedure similar
to the one developed in Section 2.3. The only change is
the factorization (61) and the replacement of

∑
β �=α by∑

β. Thus, the previous relations remain valid provided
that Wij is replaced by

WMF
ij = −

∫
ρ(r, t)xi

∂Φ

∂xj
, (69)

where Φ(r, t) is given by equation (66). In particular, for
the gravitational interaction we have

WMF
ij = −G

2

∫
drdr′ρ(r, t)ρ(r′, t)

(xi − x′
i)(xj − x′

j)
|r − r′|d ,

(70)
and the trace of the potential energy tensor is

WMF
ii = −G

2

∫
drdr′

ρ(r, t)ρ(r′, t)
|r − r′|d−2

. (71)

For d �= 2,

WMF
ii = (d − 2)WMF , (72)

where WMF is the mean field potential energy

WMF =
1
2

∫
ρΦdr, (73)

with

Φ(r, t) = − G

d − 2

∫
ρ(r, t)

|r − r′|d−2
dr′. (74)

For d = 2, we get

WMF
ii = −G

2

∫
drdr′ρ(r, t)ρ(r′, t) = −GM2

2
. (75)

Therefore, in the mean field approximation, the scalar
Virial theorem of a self-gravitating Brownian gas in d = 2

can be written as in equation (48) with the critical tem-
perature

kBT MF
c =

GM2

4N
. (76)

For equal mass particles it reduces to

kBT MF
c =

GNm2

4
. (77)

These expressions can be directly obtained from equa-
tions (46) and (47) by replacing

∑
α�=β by

∑
α

∑
β in equa-

tion (46) or by replacing N−1 by N in equation (47) since
the mean field approximation is valid for N � 1. We note
that the mean field results are relatively close to the exact
results even for a moderate number of particles. Equation
(48) is always valid and finite N effects just slightly shift
the critical temperature Tc. Since N−1 = N(1−1/N), the
correction is of order 1/N , which is precisely the domain
of validity of the factorization hypothesis (61) as shown in
[2,3] at a more general level. This corroborates the obser-
vation that the mean field approximation provides a good
description of systems with long-range interactions such
as self-gravitating systems.

3 The exact equation of state

In this section, we derive the exact equation of state of
a self-gravitating gas in two dimensions. We extend the
derivation given by Salzberg [32] and Padmanabhan [4]
in two respects: (1) we consider a multi-components sys-
tem while the previous authors assume that the particles
have the same mass; (2) we treat both the canonical and
the microcanonical ensembles while the previous authors
only consider the canonical ensemble. For comparison, we
also discuss the case of a two-dimensional plasma made of
electric charges [31].

3.1 Canonical approach

For the gravitational interaction in two dimensions

U(r1, ..., rN ) = G
∑
i<j

mimj ln |ri − rj |, (78)

the configurational part of the partition function in the
canonical ensemble is given by

Z(β, V ) =
∫

e−βG
∑

i<j mimj ln |ri−rj |
N∏

k=1

drk. (79)

To avoid the divergence of the partition function at large
distances, we assume that the system is enclosed within
a box of radius R. The following calculations also as-
sume implicitly that the partition function converges at
small distances. The existence of statistical equilibrium
states will be discussed in Section 4. Using a trick due to
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Salzberg [32], we set y = r/R. Then, the partition func-
tion can be rewritten

Z(β, V ) = R2Ne−βG ln R
∑

i<j mimj

×
∫

e−βG
∑

i<j mimj ln |yi−yj |
N∏

k=1

dyk, (80)

where the last integral is now independent on R. From this
expression, we find that

∂Z

∂R
=

2N

R


1 − βG

2N

∑
i<j

mimj


Z(β, R). (81)

The thermodynamic pressure is defined by

P =
1
β

∂ ln Z

∂V
, V = πR2. (82)

From equations (82) and (81), we obtain the exact equa-
tion of state of a two-dimensional multi-components self-
gravitating gas

P =
N

βV


1 − βG

2N

∑
i<j

mimj


. (83)

This can be written

PV = NkB(T − Tc), (84)

with the critical temperature

kBTc =
G
∑

i�=j mimj

4N
. (85)

For equal mass particles, we have

kBTc = (N − 1)
Gm2

4
. (86)

This returns the equation of state (49) obtained by the
kinetic approach. Note that for a single species system in
the mean field approximation, the equation of state (84)
can also be obtained by solving the Boltzmann-Poisson
equation and computing the pressure at the edge of the
box [33].

3.2 Microcanonical approach

The Hamiltonian of a self-gravitating system in two di-
mensions is

H =
N∑

i=1

1
2
miv

2
i + G

∑
i<j

mimj ln |ri − rj |. (87)

The density of states in the microcanonical ensemble is
defined by

g(E, R) =
∫

δ(E − H)
N∏

k=1

drkdvk. (88)

With the transformation y = r/R, it can be written

g(E, R) = R2Ng(E′, 1), (89)

with

E′ = E − G ln R
∑
i<j

mimj . (90)

The entropy is defined by

S(E, R) = kB ln g(E, R). (91)

According to equation (89), we have

S(E, R) = 2NkB ln R + S(E′, 1). (92)

The temperature and the pressure are given by

1
T

=
(

∂S

∂E

)
N,V

, P = T

(
∂S

∂V

)
N,E

, (93)

with V = πR2. From equations (92), (90) and (93)-a we
find that(

∂S

∂R

)
N,E

=
2NkB

R
− G

TR

∑
i<j

mimj . (94)

Using equation (93)-b, we obtain

PV = NkB


T (E) − G

2NkB

∑
i<j

mimj


. (95)

This returns the expression (84) obtained in the canon-
ical ensemble with the critical temperature (85) and
(86). Therefore, the equations of state coincide in the
two ensembles for any number of particles. This result
was not obvious at first sights. For two-dimensional self-
gravitating systems, the microcanonical and canonical en-
sembles are equivalent at the thermodynamic limit with
N → +∞5 but they are not equivalent for finite values
of N . For example, we shall explicitly show in Section 5
that the caloric curves for N = 2 calculated in the micro-
canonical and canonical ensembles differ. Yet, the equa-
tion of state is the same for any N .

3.3 The case of electric charges

The case of electric charges is obtained by taking G = −1
and by making the substitution m ↔ q. Therefore, the
energy of interaction in two dimensions reads

U(r1, ..., rN ) = −
∑
i<j

qiqj ln |ri − rj |. (96)

5 This is because the series of equilibria of a two-dimensional
self-gravitating gas does not present turning points contrary to
3D self-gravitating systems; see, e.g., [12].
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The previous results remain valid for electric charges in-
stead of point masses, provided that we make the above
mentioned substitutions. In particular, equations (83)
and (95) are now replaced by

P =
NkBT

V


1 +

β

2N

∑
i<j

qiqj


 . (97)

Using the condition of electroneutrality

N∑
i=1

qi = 0, (98)

we find that
∑
i<j

qiqj =
1
2

∑
i�=j

qiqj

=
1
2

N∑
i=1

qi


 N∑

j=1

qj − qi


 = −1

2

N∑
i=1

q2
i . (99)

Therefore, the equation of state of a neutral two-
dimensional plasma can be written

PV = NkB(T − Tc), (100)

with the critical temperature

kBTc =
∑N

i=1 q2
i

4N
. (101)

If the plasma consists in N/2 charges +e and N/2 charges
−e, we get

kBTc =
e2

4
. (102)

These results have been first derived by Salzberg and
Prager [31] in the canonical ensemble. The calculations
of Section 3.2 show that they can also be derived in the
microcanonical ensemble. Since P ≥ 0, a necessary condi-
tion for the system to be at statistical equilibrium is that
T ≥ Tc. However, this condition does not guarantee statis-
tical equilibrium. We shall see in the sequel that statistical
equilibrium exists only for T ≥ T∗ = 2Tc. For T < T∗ there
is no equilibrium state and the system collapses. This
leads to the formation of N/2 pairs (+,−) correspond-
ing to non interacting “atoms”. By contrast, for T > T∗
the system is fully ionized. For comparison, a gas of self-
gravitating Brownian particles collapses to a single Dirac
peak containing the N particles for T < T∗ = N

N−1Tc

while it remains diffuse for T > T∗. Since the collapse in
plasma physics leads to the formation of individual pairs,
we understand qualitatively why the collapse temperature
kBT∗ = e2/2 does not depend on N (it corresponds to the
condition to form one pair). By contrast, since the col-
lapse in gravity leads to the formation of a single Dirac
peak containing all the mass, the collapse temperature

T∗ = NGm2/4 depends on N (it corresponds to the con-
dition to form a cluster of N particles). Finally, it is easy
to determine the critical temperature of a non neutral 2D
plasma consisting in N+ charges +e and N− charges −e.
From, equations (97) and (100), we find

kBTc =
e2

4

[
1 − (N+ − N−)2

N

]
. (103)

4 Existence of statistical equilibrium
in the canonical ensemble

For a finite two-dimensional self-gravitating system, there
exists statistical equilibrium states for any value of the
energy in the microcanonical ensemble (Hamiltonian sys-
tems). Indeed, if the system is enclosed within a box, the
density of states g(E) is convergent for any E. By con-
trast, in the canonical ensemble (Brownian systems) equi-
librium states exist only for sufficiently high temperatures
T > T∗. Although the existence of a collapse temperature
T∗ is well-known, there is some ambiguity in the litera-
ture concerning its precise value. In particular, we will
show that the collapse temperature T∗ does not exactly
coincide with the critical temperature Tc introduced pre-
viously. We will also show that the collapse temperature
T∗ is difficult to determine for a multi-components system
while it takes a simple expression when the particles have
the same mass m.

4.1 Statistical equilibrium state for T > T1

In this section, using the arithmetic-geometric mean in-
equality, we show that the partition function Z(β) is con-
vergent for T > T1. We extend the method developed by
Kiessling [34] to the case of a multi-components system.
First, we note that

e−βG
∑

i<j mimj ln |ri−rj | = e−
1
2 βG

∑
i

∑
j �=i mimj ln |ri−rj |

=
∏

i

e−
1
2 βG

∑
j �=i mimj ln |ri−rj |

=
∏

i

[
e−

N
2 βG

∑
j �=i mimj ln |ri−rj |

]1/N

. (104)

Now, by the arithmetic-geometric mean inequality

1
N

∑
i

ai ≥
∏

i

a
1/N
i , (105)

we get

e−βG
∑

i<j mimj ln |ri−rj | ≤ 1
N

∑
i

e−
N
2 βG

∑
j �=i mimj ln |ri−rj |

=
1
N

∑
i

∏
j �=i

e−
N
2 βGmimj ln |ri−rj |.

(106)
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From this inequality, we find that the configurational part
of the partition function satisfies

Z ≤ 1
N

∑
i

∫
dri

∏
j �=i

∫
drje

−N
2 βGmimj ln |ri−rj |.

(107)

The integrand is maximum for ri = 0 yielding

Z ≤ 1
N

∑
i

∫
dri

∏
j �=i

∫
e−

N
2 βGmimj ln x dx

=
πR2

N

∑
i

∏
j �=i

∫
x−N

2 βGmimj dx

=
2π2R2

N

∑
i

∏
j �=i

∫ R

0

x1− N
2 βGmimj dx. (108)

If

kBT >
NGmimj

4
(109)

for all i, j with i �= j, then all the integrals converge and
the partition function is finite. Therefore, a sufficient con-
dition for the existence of statistical equilibrium is that
T > T1 with

kBT1 =
NGmImII

4
, (110)

where I and II denote the two most massive particles in
the system. In that case, we obtain the following bound
on the partition function

Z ≤ πR2

N

∑
i

∏
j �=i

πR2−N
2 βGmimj

1 − N
4 βGmimj

. (111)

For equal mass particles, a sufficient condition for the ex-
istence of statistical equilibrium is that T > T1 with

kBT1 =
NGm2

4
. (112)

In that case, we recover the bound on the partition func-
tion given by Kiessling [34]:

Z ≤ πR2

(
πR2−N

2 βGm2

1 − N
4 βGm2

)N−1

. (113)

4.2 Collapse for T < T2

We now show that the partition function is divergent for
T < T2. We first rewrite the configurational partition func-
tion in the form

Z =
∫

dr1...drN

∏
i�=j

1
|ri − rj | 12 βGmimj

. (114)

We select a particle (allowed to move over the whole box)
and approach the N − 1 other particles at a distance ε of
the first [34,35]. The contribution of this configuration to
the partition function behaves like

Z ∼ R2ε2(N−1)
∏
i�=j

(
1
ε

) 1
2 βGmimj

= R2

(
1
ε

)∑
i�=j

1
2 βGmimj−2(N−1)

. (115)

Considering now the limit ε → 0, we see that the partition
function diverges if T < T2 with

kBT2 =
G
∑

i�=j mimj

4(N − 1)
. (116)

For equal mass particles, we find that

kBT2 = N
Gm2

4
. (117)

4.3 The collapse temperature T∗

In conclusion, the partition function converges for T > T1

and diverges for T < T2. For T2 < T < T1, we have no re-
sult in the general case. However, for equal mass particles,
we have T1 = T2 = T∗ with

kBT∗ = N
Gm2

4
. (118)

Therefore, the partition function converges for T > T∗
and diverges for T < T∗. For T > T∗, we have a diffuse
gas and for T < T∗ the most probable distribution is a
Dirac peak containing all the particles. We note that T∗
differs by a factor 1 − 1/N from the critical temperature
Tc appearing in the equation of state (84). Indeed,

T∗ =
N

N − 1
Tc. (119)

This point has been overlooked in the literature. In Sec-
tion 5, we shall provide a clear evidence of this difference
by considering explicitly the case N = 2 where the parti-
tion function can be calculated exactly. Finally, we note
that the pressure (84) at the collapse temperature T∗ is
equal to

PV = kBT∗, (T = T∗). (120)

This corresponds to the ideal pressure due to N∗ = 1
effective particle (the Dirac peak) containing the whole
mass when the system has collapsed.

For a multi-components system, the collapse tem-
perature T∗ seems difficult to obtain. The case of a
two-components system has been considered by Sopik
et al. [18] in the mean field approximation and an explicit
expression of the collapse temperature has been obtained
in that case.
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4.4 The case of 2D plasmas

For self-gravitating systems, the partition function di-
verges for T ≤ T∗ due to the collapse of all the particles at
the same point. Thus, below T∗, the most probable struc-
ture is a Dirac peak containing the whole mass. By using
an argument similar to that of equation (115), we see that
if we concentrate only a fraction of the particles (e.g. a
pair), we obtain a smaller collapse temperature, so that
this configuration is less favorable.

By contrast, for neutral plasmas with N/2 charges +e
and N/2 charges −e, the divergence of the partition func-
tion corresponds to the formation (collapse) of individual
pairs (+,−). Therefore, we can obtain the collapse tem-
perature by considering the statistical mechanics of only
one pair (N = 2). This is done it the next section and the
analysis yields

kBT∗ =
e2

2
. (121)

Therefore, the partition function of the N -body system
converges for T > T∗ and diverges for T < T∗. For T >
T∗, we have a fully ionized gas and for T < T∗ the most
probable distribution is N/2 pairs (+,−). We note that
T∗ differs by a factor 2 from the critical temperature Tc

appearing in the equation of state (100). Indeed,

T∗ = 2Tc. (122)

Since the equilibrium states exists only for T > T∗, the
equation of state (100) is valid only above T∗. For T < T∗
(including the region Tc < T < T∗), the partition function
diverges due to the collapse of pairs of point particles of
opposite sign. Finally, we note that the pressure (100) at
the collapse temperature T∗ is equal to

PV =
1
2
NkBT∗, (T = T∗). (123)

This is the pressure created by an ideal gas of N∗ = N/2
non-interacting pairs (+,−). Finally, for T < Tc, the Virial
theorem shows that the N∗ pairs collapse to a single point
in a finite time (if the motion of the charges in the plasma
is described by equation (10)) while we have no result for
Tc < T < T∗. In that range of temperatures we probably
have a homogeneous distribution of pairs.

5 The case N = 2

The statistical mechanics of two particles in gravitational
interaction (binary star) was considered by Padmanabhan
[4] in d = 3 dimensions. He showed that this “toy model”
exhibits phenomena that are representative of more realis-
tic stellar systems with a large number of particles. Here,
we shall extend his analysis in d = 2 dimensions (the one-
dimensional case is treated in Appendix C). For N = 2
particles, it is possible to compute the density of states
and the partition function exactly. This will allow us to
illustrate the preceding results on an explicit example.

5.1 The microcanonical ensemble

The Hamiltonian of a system of two particles with mass
m1 and m2 in gravitational interaction can be written

H =
1
2
MV 2 +

1
2
µv2 + Gm1m2 ln r, (124)

where (R,V) denote the position and the velocity of the
centre of mass and (r,v) the position and the velocity of
the reduced particle. On the other hand

M = m1 + m2, µ =
m1m2

m1 + m2
, (125)

denote, respectively, the total mass of the particles and the
mass of the reduced particle. We shall first compute the
hypersurface of phase space with energy less than E, i.e.

Γ (E) =
∫

H≤E

dRdVdrdv. (126)

Noting xi = (M/2)1/2Vi for i = 1, 2 and xi = (µ/2)1/2vi

for i = 3, 4, the preceding quantity can be rewritten

Γ (E) =
4πR2

µM

∫
dr
∫
‖x‖≤√

E−Gm1m2 ln r

d4x. (127)

The last integral represents the volume of a four-
dimensional hypersphere with radius

√
E − Gm1m2 ln r.

Therefore, we obtain

Γ (E) =
8π2R2

µM
V4

∫ rm

0

(E − Gm1m2 ln r)2 rdr,

(128)

where rm denotes the maximum distance accessible to
the reduced particle and V4 is the volume of a four-
dimensional hypersphere with unit radius. From the gen-
eral expression

Vd =
πd/2

Γ (d/2 + 1)
, (129)

we find that V4 = π2/2. The density of states in the mi-
crocanonical ensemble is given by g(E) = dΓ/dE. Using
equation (128), we obtain

g(E) =
8π4R2

µM

∫ rm

0

(E − Gm1m2 ln r) rdr. (130)

The range of integration rm is such that E−Gm1m2 ln r ≥
0 and r ≤ R. Therefore, rm = eE/Gm1m2 if E ≤
Gm1m2 ln R and rm = R if E ≥ Gm1m2 ln R. Introducing

A = 8π4G, ε =
E

Gm1m2
, t =

kBT

Gm1m2
, (131)

we obtain

g(ε) = AR2

∫ rm

0

(ε − ln r) rdr, (132)
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with rm = eε if ε ≤ ln R and rm = R if ε ≥ ln R. The
entropy is given by

S(ε) = kB ln g(ε), (133)

and the temperature by

1
T

=
∂S

∂E
→ 1

t
=

∂(S/kB)
∂ε

. (134)

Finally, the pressure is given by

P = T
∂S

∂V
, V = πR2. (135)

The caloric curve t = t(ε) and the equation of state in the
microcanonical ensemble can be obtained from the exact
expression (132) of the density of states. For ε ≤ ln R, we
obtain

g(ε) =
AR2

4
e2ε, (136)

kBT =
Gm1m2

2
→ t =

1
2
, (137)

PV = kBT. (138)

For ε ≥ ln R, we obtain

g(ε) =
AR4

2

(
ε − ln R +

1
2

)
, (139)

t = ε − ln R +
1
2
, (140)

PV = 2kB(T − Tc), (141)

with

kBTc =
Gm1m2

4
. (142)

The caloric curve t(ε) in the microcanonical ensemble is
represented in Figure 1.

5.2 The canonical ensemble

For N = 2 particles in gravitational interaction, the par-
tition function in the canonical ensemble is given by

Z =
∫

e−βM V 2
2 e−βµ v2

2 e−βm1m2G ln rdRdVdrdv.

(143)

Integrating on R and on the velocities, we get

Z =
8π3V

β2m1m2

∫ R

0

r1−βGm1m2 dr. (144)
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Fig. 1. Caloric curve in microcanonical (MCE) and canoni-
cal (CE) ensembles for the binary star model N = 2 in two-
dimensions. The caloric curves are similar in the two ensembles
(without negative specific heat region) so that there is no phase
transition contrary to the situation in d = 3 [4,5]. There exists
equilibrium states for all energies in MCE and for tempera-
tures t > t∗ = 1/2 in CE. It can be of interest to compare
these curves with the caloric curve obtained within the mean
field approximation valid for N � 1 which presents a similar
behaviour [33,12].

The partition function is finite if, and only if, T > T∗ with

kBT∗ =
Gm1m2

2
. (145)

For equal mass particles, we have

kBT∗ =
Gm2

2
. (146)

These expressions agree with the general results of Sec-
tion 4. For N = 2, we have T1 = T2 = T∗ even if the
particles have different masses m1 �= m2. For T > T∗, the
partition function is explicitly given by

Z =
8π4

β2m1m2

R4−βGm1m2

2 − βGm1m2
. (147)

This expression corresponds to the bound obtained in
equation (111). The pressure can be computed from equa-
tions (82) and (147) leading to

PV = 2kB(T − Tc), (148)

with

kBTc =
Gm1m2

4
. (149)

For equal mass particles, we get

kBTc =
Gm2

4
. (150)
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Fig. 2. Equation of state for the binary star model N = 2 in
two-dimensions. Equilibrium states exist only for t > t∗ = 1/2
so that the portion of the curve tc = 1/4 < t < t∗ = 1/2 is not
physical. Note that the pressure does not vanish at t = t∗ =
1/2. It corresponds to the pressure due to the Dirac peak (one
effective particle) that forms at this critical temperature (see
Sect. 4.3).

These expressions are consistent with equations (84, 86).
We also check explicitly that T∗ �= Tc (for N = 2, we have
T∗ = 2Tc). Therefore, Tc is smaller than the collapse tem-
perature T∗ below which the partition function diverges.
The curve P (T ) is plotted in Figure 2.

The caloric curve 〈ε〉(t) in the canonical ensemble can
be obtained from the exact expression (147) of the parti-
tion function. The average energy is given by

〈E〉 = −∂ ln Z

∂β
→ 〈ε〉 = t2

∂ ln Z

∂t
. (151)

Using equation (147), we obtain

〈ε〉 =
(4t − 3)t
2t − 1

+ lnR. (152)

The caloric curve 〈ε〉(t) in the canonical ensemble is rep-
resented in Figure 1 and is compared with the caloric
curve in the microcanonical ensemble. We note that, for
N = 2, the specific heats C = d〈E〉/dT diverges like
∝(T−T∗)−2 at T = T∗. By contrast, in the limit N → +∞
where a mean field approximation can be implemented,
we find from equation (40) of Sire and Chavanis [12] that
C ∝(T − T∗)−1.

Finally, the distribution of energies at temperature T
in the canonical ensemble is given by

P (E) =
1

Z(T )
g(E)e−βE. (153)

Using P (E)dE = P (ε)dε, this can be rewritten

P (ε)
Gm1m2

=
1

Z(t)
g(ε)e−ε/t. (154)
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Fig. 3. Distribution of energies for the binary star model N =
2 in two-dimensions in the canonical ensemble. We have plotted
this distribution for different values of the temperature.

Using equations (136, 139) and (147), we find that

P (ε) =
2t − 1
4t3

e(2−1/t)ε, (ε ≤ 0), (155)

P (ε) =
2t − 1
4t3

(2ε + 1)e−ε/t, (ε ≥ 0). (156)

We have taken R = 1 to simplify the expressions. The dis-
tribution of energies is represented in Figure 3 for different
temperatures.

Taking G = −1 and mi = qi, these results also describe
a two-dimensional plasma with 1 charge +e and 1 charge
−e. According to equation (145), the partition function
exists only for T > T∗ with

kBT∗ =
e2

2
, (157)

while the critical temperature appearing in the equation
of state (148) is given by

kBTc =
e2

4
. (158)

Thus

T∗ = 2Tc. (159)

More general studies [36] show that the expression (157)
of the collapse temperature remains valid for N/2 charges
+e and N/2 charges −e where N is arbitrary. Indeed, the
“catastrophic collapse” at T = T∗ corresponds to the for-
mation of N∗ = N/2 non-interacting pairs (+,−) such
as those studied here individually. It can therefore be ob-
tained by studying the collapse of just one pair. There-
fore, in 2D plasma physics, T∗ = 2Tc for any N (for a
neutral plasma with two components). By comparison, in
2D gravity T∗ = N

N−1Tc (for a one component gas).
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5.3 Relevance of a statistical description for N = 2
particles

We may wonder about the relevance of studying a system
of N = 2 particles using statistical ensembles.

For Brownian particles, the N -body distribution func-
tion is governed by the Fokker-Planck equation (6) whose
steady state is the canonical distribution (8). This is valid
for any N . For N = 1, we recover the ordinary Brown-
ian motion of a free particle submitted to a friction and
a noise. The equilibrium state is the Maxwell-Boltzmann
distribution predicted by statistical mechanics. For N = 2,
we have two Brownian particles interacting via self-gravity
and this system can be studied using the canonical ensem-
ble. More generally, for Brownian particles, the canonical
ensemble is justified for any N . For Hamiltonian systems,
the relevance of a statistical description for a small num-
ber of particles is less clear. For example, N = 2 parti-
cles in gravitational interaction have a simple determin-
istic motion satisfying the Kepler laws. A statistical de-
scription may be justified, however, when the particles
are hard spheres enclosed within a box so that their mo-
tion is very irregular due to collisions between themselves
or against the walls (see the discussion in the review of
Padmanabhan [4]). In that case, the microcanonical en-
semble may be employed.

In any case, the density of states and the partition
function can be defined mathematically for any N and
it is interesting to compute these quantities exactly for
N = 2 and compare these results with the ones obtained
for N → +∞ by using a mean field approximation. For
3D self-gravitating systems, it is shown in [4,5] that the
caloric curves (in microcanonical and canonical ensembles)
obtained with N = 2 particles are already very close to
those obtained for a large number of particles. Similarly,
we have shown in the present paper that the same obser-
vation holds in d = 2 and d = 1 dimensions. This means
that the mean field results are reliable even for a small
number of particles.

6 Conclusion: analogies with chemotaxis
and point vortex dynamics

In this paper, we have obtained the exact expression of the
diffusion coefficient of a gas of self-gravitating Brownian
particles in two dimensions. Two-dimensional gravity is a
rare example where exact results can be obtained6. The
diffusion coefficient exhibits a critical temperature Tc be-
low which it becomes negative indicating finite time blow-
up. In a finite domain, this critical temperature is slightly
smaller than the collapse temperature T∗ below which
the partition function diverges. However, this difference
is small, the ratio being of the order of 1 − 1/N , and the
two temperatures coincide at the thermodynamic (mean

6 Of course, the results of this paper can be easily extended
to power-law potentials of the form u′(ξ) = G/ξd−α in d di-
mensions. In that case, the critical dimension is dcrit = α + 1.

field) limit N → +∞. We may wonder what happens dy-
namically in the region Tc < T < T∗ since there is no equi-
librium state in that case while we cannot prove finite time
blow up from the Virial theorem. The system collapses for
T < T∗ but it is possible that, for Tc < T < T∗, it takes an
infinite time to form the Dirac peak. We stress that the
computation of the diffusion coefficient brings only partial
information on the dynamics of the self-gravitating Brow-
nian gas. For example, it does not give any information
concerning the precise evolution of the density distribu-
tion of the particles. To obtain the dynamical evolution
of the density profile ρ(r, t), we need to solve the N -body
equations (3, 4) or make a mean field approximation, valid
in the proper thermodynamic limit N → +∞, where the
problem reduces to the study of the Smoluchowski-Poisson
(SP) system. Therefore, the complete description of the
self-gravitating Brownian gas remains highly complicated
and requires in general some approximations even if an
exact result (1, 2) can be obtained.

The results obtained in this paper can also be rele-
vant in mathematical biology [37]. They apply to a sim-
plified version of the Keller-Segel model [38] modelling
the chemotaxis of bacterial populations. The Keller-Segel
model can be derived from a system of coupled Langevin
equations of the form [39,40]:

drα

dt
= χ∇αc +

√
2DRα(t), (160)

∂c

∂t
= −kc + Dc∆c + h

N∑
α=1

δ(r − rα(t)). (161)

Here, rα(t) represents the position of a biological entity
(cell, amoeba, bacteria,...) and c(r, t) is the concentra-
tion of the secreted chemical. The cells have a diffusion
motion with diffusion coefficient D and they also move
along a positive gradient of chemical (attractive chemo-
taxis χ > 0). The chemical is produced by the cells with
a strength h. It is in addition degraded at a rate k and
diffuses with a diffusion coefficient Dc. The usual Keller-
Segel model is recovered from these equations by making
a mean field approximation leading to

∂ρ

∂t
= D∆ρ − χ∇ · (ρ∇c), (162)

∂c

∂t
= −kc + Dc∆c + hρ. (163)

Some authors have considered a simplified chemotactic
model where the equation (161) for the chemical is re-
placed by a Poisson equation

∆c = −λ

N∑
α=1

mδ(r − rα(t)). (164)

This can be justified in a limit of high diffusivity of
the chemical and, in addition, for sufficiently dense sys-
tems [41,40]. In that case, the chemotactic problem be-
comes isomorphic to the study of self-gravitating Brow-
nian particles described by equation (10), with a proper



P.H. Chavanis: Exact diffusion coefficient of self-gravitating Brownian particles in two dimensions 405

re-interpretation of the parameters. In particular, the con-
centration −c of the chemical plays the role of the grav-
itational potential Φ. We have the additional correspon-
dences λ ↔ SdG and χ ↔ µm. All the results of this paper
can then be extended to the biological context provided
that we make the appropriate substitutions. Furthermore,
the consideration of the dimension d = 2 is particularly
justified in biology since cellular organisms are often as-
cribed to move on a plane. In chemotaxis, we rather use
the mass as a control parameter instead of the tempera-
ture. For example, the critical mass corresponding to the
critical temperature Tc is

Mc =
8πD

λχ
+ m, (165)

and the collapse mass corresponding to the collapse tem-
perature T∗ is

M∗ =
8πD

λχ
. (166)

For a large number of cells (M � m) the two values co-
incide. For M < M∗, a box-confined system reaches an
equilibrium state. For M > M∗, the system collapses and
forms a Dirac peak corresponding to chemotactic aggrega-
tion. The adaptation of our results to the biological con-
text is straightforward [42] so it will not be discussed in
more detail here.

Let us finally consider the case of point vortices in two-
dimensional hydrodynamics (see, e.g., [24]). The Hamilto-
nian of the point vortex gas is7

H = − 1
2π

∑
i<j

γiγj ln |ri − rj |, (167)

where the coordinates (x, y) are canonically conjugate [43].
The partition function in the canonical ensemble is given
by

Z =
∫

e
β
2π

∑
i<j γiγj ln |ri−rj |

N∏
k=1

drk. (168)

We note that there is no kinetic (quadratic) term in the
Hamiltonian (167) in the usual sense, so that the temper-
ature can take both positive or negative values [44]. By
contrast, only positive temperatures are allowed in plasma
physics and gravity. Let us first assume that the point vor-
tices have the same circulation γ. At negative tempera-
tures, the partition function is formally equivalent to that
for self-gravitating systems. Therefore, at very negative
inverse temperatures, point vortices have the tendency to
“attract” each other and group themselves in a single ag-
gregate (supervortex) of circulation Nγ. This corresponds

7 For brevity, we do not take into account the contribution of
the images (in a bounded domain) because most of the follow-
ing results are obtained by considering configurations where
the vortices form compact clusters. They are therefore inde-
pendent on boundary effects.

to a regime of high energies. This is similar to the for-
mation of a Dirac peak in the gravitational problem for
T < T∗. Thus, the partition function exists if and only if
β > β∗ with

β∗ = − 8π

Nγ2
. (169)

This is the exact equivalent of the collapse temperature
(118) as can be seen by taking G = −1/(2π) and m ↔ γ.
At positive temperatures, the partition function is for-
mally equivalent to that for a non-neutral plasma of equal
charges. Therefore, at large positive inverse temperatures,
point vortices have the tendency to “repell” each other
and accumulate on the boundary of the domain. We now
consider N vortices with circulations +γ and N vortices
with circulations −γ. At positive temperatures, the parti-
tion function is formally equivalent to that for a neutral
plasma. Therefore, at large positive inverse temperatures,
the vortices of opposite sign have the tendency to “at-
tract” each other and form N dipoles (+,−). This corre-
sponds to a regime of high negative energies. This is sim-
ilar to the formation of N pairs (+,−) in plasma physics
for T < T∗. Thus, the partition function exists if and only
if β < β∗ with

β∗ =
4π

γ2
. (170)

This is the exact equivalent of the collapse temperature
(121). At negative temperatures, the vortices of same sign
have the tendency to “attract” each other and form an ag-
gregate of positive circulation Nγ and an aggregate of neg-
ative circulation −Nγ (vortex dipole). This corresponds
to a regime of high positive energies. This is similar to
the formation of a Dirac peak in the gravitational prob-
lem, except that we have here two peaks: one with pos-
itive circulation and one with negative circulation. The
partition function exists if and only if β > β∗ where β∗
is given by equation (169) like in the case with one clus-
ter of N particles. Therefore, the point vortex gas is very
rich because it exhibits features similar to self-gravitating
systems at negative temperatures and features similar to
plasma systems at positive temperatures. We emphasize,
however, that point vortices form a Hamiltonian system
described by the microcanonical ensemble so that the con-
trol parameter is the energy (not the temperature) and the
quantity of interest is the density of states (not the parti-
tion function). It can be shown that the density of states
converges for any accessible energy. Therefore, the above
collapse temperatures (169)-(170) represent lower and up-
per bounds on the caloric curve β(E) which correspond
to E → +∞ and E → −∞ respectively. The question to
know what happens for β < − 8π

Nγ2 or β > 4π
γ2 has a priori

no sense in vortex dynamics since we cannot impose the
temperature of the vortex gas.

I acknowledge stimulating discussions with C. Sire and D. Dean
on this subject. I am also grateful to D. Dallié for encourage-
ments.
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Appendix A: Alternative derivation
of the kinetic equation

In this Appendix, we provide an alternative derivation of
the exact kinetic equation equation (17). The Langevin
equation (10) governing the time evolution of particle α
in the strong friction limit can be written

drα

dt
= −mαµα∇Φ(α)(rα) +

√
2DαRα(t), (171)

where

Φ(α)(r, t) =
∑
β �=α

mβu(|r − rβ(t)|), (172)

denotes the exact potential created by the other particles.
We define the one and two-body probability distributions
by

Pα(r, t) = 〈δ(r − rα(t))〉, (173)

Pα,β(r, r′, t) = 〈δ(r − rα(t))δ(r′ − rβ(t))〉. (174)

Differentiating equation (173) with respect to time, we
obtain

∂Pα

∂t
= −∇ · 〈ṙα(t)δ(r − rα(t))〉. (175)

Substituting from equation (171) in equation (175), we
find that

∂Pα

∂t
= −∇ · 〈

√
2DαRα(t)δ(r − rα(t))〉

+ ∇ · 〈mαµα∇Φ(α)(rα(t))δ(r − rα(t))〉. (176)

The first term is the standard term that appears in deriv-
ing the Fokker-Planck equation for a pure random walk;
it leads to a term proportional to the Laplacian of Pα:

−∇ · 〈
√

2DαRα(t)δ(r − rα(t))〉 = Dα∆Pα.

(177)

To evaluate the second term, we first write

Φ(α)(r, t) =
∫

dr′
∑
β �=α

mβu(|r − r′|)δ(r′ − rβ(t)).

(178)

This yields

〈∇Φ(α)(rα(t))δ(r − rα(t))〉 =∫
dr′
∑
β �=α

mβ∇u(|r − r′|)〈δ(r − rα(t))δ(r′ − rβ(t))〉

=
∫

dr′
∑
β �=α

mβPα,β(r, r′, t)∇u(|r − r′|). (179)

Substituting equations (177) and (179) in equation (176),
we get the exact kinetic equation (17).

We can easily extend this approach so as to take into
account the inertia of the particles. In that case, the dy-
namical evolution of particle α is described by stochastic
equations of the form

drα

dt
= vα, (180)

dvα

dt
= −ξαvα −∇Φ(α)(rα(t)) +

√
2D′

αRα(t). (181)

We define the one-body probability distributions in phase
space by

Pα(r,v, t) = 〈δ(r − rα(t))δ(v − vα(t))〉, (182)

where the brackets denote an average over the noise. Simi-
larly, the two-body probability distribution in phase space
is

Pα,β(r,v; r′,v′, t) = 〈δ(r − rα(t))δ(v − vα(t))

× δ(r′ − rβ(t))δ(v′ − vβ(t))〉. (183)

Taking the time derivative of Pα, we get

∂Pα

∂t
= − ∂

∂r
· 〈ṙα(t)δ(r − rα(t))δ(v − vα(t))〉

− ∂

∂v
· 〈v̇α(t)δ(r − rα(t))δ(v − vα(t))〉. (184)

Inserting the equations of motion (180)-(181) in equa-
tion (184), we obtain

∂Pα

∂t
= − ∂

∂r
· 〈vα(t) δ(r − rα(t))δ(v − vα(t))〉

+
∂

∂v
· 〈ξαvα(t) δ(r − rα(t))δ(v − vα(t))〉

+
∂

∂v
· 〈∇Φ(α)(rα(t)) δ(r − rα(t))δ(v − vα(t))〉

− ∂

∂v
· 〈
√

2D′
αRα(t) δ(r − rα(t))δ(v − vα(t))〉. (185)

The first two terms are straightforward to evaluate. The
fourth term is the standard term that appears in deriv-
ing the Fokker-Planck equation for a pure random walk; it
leads to a term proportional to the Laplacian of Pα in ve-
locity space. The third term can be evaluated by inserting
the expression (178) in equation (185). Finally, we obtain
the exact equation

∂Pα

∂t
+ v · ∂Pα

∂r
− ∂

∂v
·
∫

dr′
∑
β �=α

mβ∇u(|r − r′|)

×Pα,β(r,v; r′, t) =
∂

∂v
·
[
D′

α

∂Pα

∂v
+ ξαPαv

]
, (186)

where the statistical correlations are encapsulated in the
two-body probability distribution

Pα,β(r,v; r′, t) = 〈δ(r − rα(t))δ(v − vα(t))δ(r′ − rβ(t))〉.
(187)
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If we implement a mean field approximation

Pα,β(r,v; r′, t) = Pα(r,v, t)Pβ(r′, t), (188)

the preceding equation can be rewritten

∂Pα

∂t
+v · ∂Pα

∂r
− ∂Pα

∂v
·∇
∫

dr′
∑
β �=α

mβu(|r−r′|)Pβ(r′, t) =

∂

∂v
·
[
D′

α

∂Pα

∂v
+ ξαPαv

]
. (189)

If we extend the sum over all β and introduce the spatial
density (63), we obtain

∂Pα

∂t
+ v · ∂Pα

∂r
− ∂Pα

∂v
· ∇
∫

dr′u(|r − r′|)ρ(r′, t) =

∂

∂v
·
[
D′

α

∂Pα

∂v
+ ξαPαv

]
. (190)

This can be rewritten in the form of a mean field Kramers
equation

∂Pα

∂t
+ v · ∂Pα

∂r
−∇Φ · ∂Pα

∂v
=

∂

∂v
·
[
D′

α

∂Pα

∂v
+ ξαPαv

]
,

(191)

where

Φ(r, t) =
∫

ρ(r′, t)u(|r − r′|)dr′, (192)

is the potential.

Appendix B: The case T = 0

Here, we assume that all the particles have the same mass
m. At T = 0 (no noise), the equations of motion (10) in
the overdamped limit become

drα

dt
= −1

ξ
∇Φex(rα, t), (193)

where Φex(r, t) is the exact gravitational potential that is
solution of the Poisson equation

∆Φex = SdGρex, (194)

with the exact density field

ρex(r, t) =
N∑

α=1

mδ(r − rα(t)). (195)

Taking the time derivative of equation (195), we get

∂ρex

∂t
= −

N∑
α=1

m∇ · (ṙαδ(r − rα(t))) . (196)

Substituting equations (193) in equation (196), we obtain

∂ρex

∂t
=

1
ξ

N∑
α=1

m∇ · (∇Φex(rα(t), t)δ(r − rα(t)))

=
1
ξ
∇ ·
(
∇Φex(r, t)

N∑
α=1

mδ(r − rα(t))

)
, (197)

so that, finally,

∂ρex

∂t
=

1
ξ
∇ · (ρex∇Φex(r, t)) . (198)

This exact equation, where ρex is expressed in terms of
Dirac functions and Φex is given by equation (194), con-
tains exactly the same information as the deterministic
equations (193).

For the inertial model, at T = 0, the equations of mo-
tion are

drα

dt
= vα, (199)

dvα

dt
= −ξvα −∇Φex(rα, t). (200)

Introducing the exact distribution function

fex(r,v, t) =
N∑

α=1

mδ(r − rα(t))δ(v − vα(t)), (201)

and taking the time derivative of equation (201), we get

∂fex

∂t
= −

N∑
α=1

m∇ · (ṙαδ(r − rα(t))δ(v − vα(t)))

−
N∑

α=1

m
∂

∂v
· (v̇αδ(r − rα(t))δ(v − vα(t))) .

(202)

Substituting equations (199, 200) in equation (202) and
following a procedure similar to that developed previously,
we obtain

∂fex

∂t
+ v · ∂fex

∂r
−∇Φex · ∂fex

∂v
= ξ

∂

∂v
(fexv). (203)

This exact equation, where fex is expressed in terms of
Dirac functions, contains exactly the same information as
the deterministic equations (199, 200). For ξ = 0, it re-
duces to the Klimontovich equation of plasma physics.

Appendix C: The case N = 2 in one dimension

In this Appendix, we study the statistical mechanics of
two particles in gravitational interaction in d = 1 where
explicit results can be obtained.
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C.1 The microcanonical ensemble

In d = 1, the Hamiltonian of two particles in gravitational
interaction can be written

H =
1
2
MV 2 +

1
2
µv2 + Gm1m2|r|, (204)

where we have used the coordinates (R, V ) of the center
of mass and the coordinates (r, v) of the reduced particle.
We note that the energy takes only positive values. Intro-
ducing x1 = (M/2)1/2V and x2 = (µ/2)1/2v, the surface
of phase space with energy less than E can be rewritten

Γ (E) =
8R√
Mµ

∫ rm

0

dr

∫
‖x‖≤√

E−Gm1m2r

d2x. (205)

The last integral represents the surface of a disc with ra-
dius

√
E − Gm1m2r. Thus, we get

Γ (E) =
8πR√
Mµ

∫ rm

0

(E − Gm1m2r)dr. (206)

The range of integration rm is such that E−Gm1m2r ≥ 0
and r ≤ R. Therefore, rm = E/Gm1m2 if E ≤ Gm1m2R
and rm = R if E ≥ Gm1m2R. The density of states in the
microcanonical ensemble is g(E) = dΓ/dE. Introducing

A =
8π√
Mµ

, ε =
E

Gm1m2R
, t =

kBT

Gm1m2R
, (207)

we get

g(ε) = ARrm, (208)

with rm = εR if 0 ≤ ε ≤ 1 and rm = R if ε ≥ 1.
The caloric curve t = t(ε) and the equation of state in

the microcanonical ensemble can be obtained from equa-
tions (133, 135) and the exact expression (208) of the den-
sity of states. For 0 ≤ ε ≤ 1, we obtain

g(ε) = AR2ε, (209)

kBT = E → t = ε, (210)

PV = 2kBT. (211)

For ε ≥ 1, we obtain

g(ε) = AR2, (212)

kBT = +∞ → t = +∞, (213)

PV = 2kBT = +∞. (214)

The caloric curve in the microcanonical ensemble is rep-
resented in Figure 4.

−5 −4 −3 −2 −1 0
−ε

0

2

4

6

8

10

1/
t

CE
MCE

Fig. 4. Caloric curve in microcanonical (MCE) and canoni-
cal (CE) ensembles for the binary star model N = 2 in one
dimension. The caloric curves are similar in the two ensem-
bles (without negative specific heat region) so that there is no
phase transition contrary to the situation in d = 3 [4,5]. There
exists equilibrium states for all accessible energies E ≥ 0 in
MCE and for all temperatures in CE. It can be of interest to
compare these curves with the caloric curve obtained within
the mean field approximation valid for N � 1 which presents
a similar behaviour [12].

C.2 The canonical ensemble

For N = 2 particles in gravitational interaction, the par-
tition function in the canonical ensemble can be written

Z =
∫

e−βM V 2
2 e−βµ v2

2 e−βm1m2G|r|dRdV drdv.

(215)

Integrating over the velocities and over the position of the
center of mass8, we get

Z =
8πR

β
√

Mµ

∫ R

0

e−βGm1m2r dr. (216)

Therefore, the partition function is given by

Z =
8πR

β2G(m1m2)3/2

(
1 − e−βGm1m2R

)
. (217)

The pressure can be computed from equation (82)
leading to

PV = kBT

[
1 +

Gm1m2βR

eβGm1m2R − 1

]
. (218)

For T → +∞, we have PV = 2kBT and for T → 0, we
have PV = kBT (this is the pressure created by an ef-
fective single particle resulting from the collapse of the

8 In fact, the domain of integration of r depends on R. There-
fore, our treatment (see also Sect. 5) is approximate and will
be improved in a future work.
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Fig. 5. Distribution of energies for the binary star model N =
2 in one dimension in the canonical ensemble. We have plotted
this distribution for different values of the temperature.

two particles). The average energy obtained from equa-
tions (151) and (217) is

〈ε〉 = 2t − 1
e1/t − 1

. (219)

It behaves like 〈ε〉 ∼ 2t for t → 0 and like 〈ε〉 ∼ t for
t → +∞. The caloric curve in the canonical ensemble is
represented in Figure 4 and it is compared with the micro-
canonical caloric curve. Finally, the energy distribution at
temperature T in the canonical ensemble obtained from
equations (153, 217) and (208) is given by

P (ε) =
εe−ε/t

t2(1 − e−1/t)
, (0 ≤ ε ≤ 1), (220)

P (ε) =
e−ε/t

t2(1 − e−1/t)
(ε ≥ 1). (221)

The distribution of energies is represented in Figure 5 for
different temperatures.
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